RUS  ENG
Full version
JOURNALS // Diskretnaya Matematika // Archive

Diskr. Mat., 1991 Volume 3, Issue 3, Pages 89–101 (Mi dm807)

Integral limit theorems for lacunary distributions

A. V. Nagaev


Abstract: For an initial distribution $\{p_k\}$ we consider the family of associated distributions that are defined by the probabilities $p_k(s)=p_ke^{sk}/f(s)$, $k=0,\pm1,\cdots $, where $f(s)=\sum_kp_ke^{sk}$ and $(s_-, s_+)$ is the convergence interval of this series. Let $\eta_1(s),\cdots ,\eta_n(s)$ be independent identically distributed random variables with the distribution $\{p_k(s)\}$. We study in detail limit distributions of the sums $\eta_1(s)+\cdots +\eta_n(s)$ as $n\to\infty$ and for various $s\in(s_-, s_+)$, paying the most attention to the case $s\to s_+$.

UDC: 519.2

Received: 09.07.1990


 English version:
Discrete Mathematics and Applications, 1992, 2:5, 533–546

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024