RUS  ENG
Full version
JOURNALS // Diskretnaya Matematika // Archive

Diskr. Mat., 1990 Volume 2, Issue 2, Pages 45–59 (Mi dm849)

Functional approximations in the theory of lower bounds for circuit complexity

S. P. Yukna


Abstract: A method for obtaining lower bounds for the complexity of gate circuits by construction of compressed semimetrics in algebras of realizable schemes of objects is recommended. The method allows one to obtain superpolynomial lower bounds for monotone circuits and certain new bounds for other (nonmonotone) circuits. A lower bound $\exp((\log_2 n)^2)$ for a certain class of circuits over the basis $\{\&,\vee,^-\}$ and a lower bound of order $\exp(n^{1/4})$ for circuits over certain three-valued extensions of the basis $\{\&,\vee,^-\}$ are given.

UDC: 519.714.4 + 510.52

Received: 21.02.1989



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024