RUS  ENG
Full version
JOURNALS // Diskretnaya Matematika // Archive

Diskr. Mat., 2007 Volume 19, Issue 3, Pages 79–83 (Mi dm966)

This article is cited in 25 papers

A general approach to studying the stability of a Pareto optimal solution of a vector integer linear programming problem

V. A. Emelichev, K. G. Kuz'min


Abstract: We consider a multicriteria integer linear programming problem with a finite set of admissible solutions. With the use of Minkowski–Mahler inequality, we obtain a bound for the domain in the space of parameters of the problem equipped with some norm where the Pareto optimality of the solution is still retained. In the case of a monotone norm, we give a formula for the stability radius of the solution. As a corollary we obtain the formula for the stability radius in the case of the Hölder norm and, in particular, the Chebyshev norm in the space of parameters of a vector criterion.

UDC: 519.8

Received: 26.05.2006

DOI: 10.4213/dm966


 English version:
Discrete Mathematics and Applications, 2007, 17:4, 349–354

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025