RUS  ENG
Full version
JOURNALS // Diskretnaya Matematika // Archive

Diskr. Mat., 2007 Volume 19, Issue 3, Pages 84–88 (Mi dm967)

This article is cited in 12 papers

An upper bound for the number of maximal independent sets in a graph

V. E. Alekseev


Abstract: Let $T(G)$ be the number of maximal independent sets, $M(G)$ be the number of generated matchings in a graph $G$. We prove the inequality $T(G)\le M(G)+1$. As a corollary, we derive the bound $T(G)\le((m-m_1)/p+1)^p+m_1$ for a graph containing no generated subgraph $(p+1)K_2$, where $m$ is the number of edges and $m_1$ is the number of dominating edges. This inequality differs from the Balas–Yu conjecture only in the presence of the last term.

UDC: 519. 1

Received: 07.06.2006

DOI: 10.4213/dm967


 English version:
Discrete Mathematics and Applications, 2007, 17:4, 355–359

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024