RUS  ENG
Full version
JOURNALS // Dal'nevostochnyi Matematicheskii Zhurnal // Archive

Dal'nevost. Mat. Zh., 2011 Volume 11, Number 2, Pages 149–154 (Mi dvmg218)

This article is cited in 1 paper

On the number of local minima of integer lattices

A. A. Illarionova, Y. A. Soykab

a Institute for Applied Mathematics, Khabarovsk Division, Far-Eastern Branch of the Russian Academy of Sciences, Khabarovsk
b Pacific National University, Khabarovsk

Abstract: Let $E_s(N)$ be the average number of local minima of $s$-dimensional integer lattices with determinant equals $N$. We prove the following estimates
$$ \frac{2^{-1}}{(s-1)!}+O_s\left(\frac{1}{\ln N}\right)\le\frac{E_s(N)}{\ln^{s-1}N}\le\frac{2^s}{(s-1)!}+O_s\left(\frac{1}{\ln N}\right) $$
for any prime $N$. Using this result we have a new lower bound for maximum number of local minima of integer lattices.

Key words: local minimum, multidimensional continuous fraction.

UDC: 511.26, 511.9

MSC: Primary 11K60; Secondary 11G70

Received: 13.09.2011



© Steklov Math. Inst. of RAS, 2025