RUS  ENG
Full version
JOURNALS // Dal'nevostochnyi Matematicheskii Zhurnal // Archive

Dal'nevost. Mat. Zh., 2015 Volume 15, Number 2, Pages 133–155 (Mi dvmg305)

This article is cited in 2 papers

On regular systems of algebraic $p$-adic numbers of arbitrary degree in small cylinders

N. V. Budarinaa, F. Götzeb

a Institute for Applied Mathematics, Khabarovsk Division, Far-Eastern Branch of the Russian Academy of Sciences, 680000 Khabarovsk, Russia, Dzerzhinsky st., 54
b Faculty of Mathematics, University of Bielefeld, P. O. Box 10 01 31, 33501 Bielefeld, Germany

Abstract: In this paper we prove that for any sufficiently large $Q\in{\mathbb N}$ there exist cylinders $K\subset{\mathbb Q}_p$ with Haar measure $\mu(K)\le \frac{1}{2}Q^{-1}$ which do not contain algebraic $p$-adic numbers $\alpha$ of degree $\deg\alpha=n$ and height $H(\alpha)\le Q$. The main result establishes in any cylinder $K$, $\mu(K)>c_1Q^{-1}$, $c_1>c_0(n)$, the existence of at least $c_{3}Q^{n+1}\mu(K)$ algebraic $p$-adic numbers $\alpha\in K$ of degree $n$ and $H(\alpha)\le Q$.

Key words: integer polynomials, algebraic $p$-adic numbers, regular system, Haar measure.

UDC: 511.42

MSC: Primary 11K60; Secondary 11J61, 11J83

Received: 22.09.2015

Language: English



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025