RUS  ENG
Full version
JOURNALS // Dal'nevostochnyi Matematicheskii Zhurnal // Archive

Dal'nevost. Mat. Zh., 2022 Volume 22, Number 2, Pages 158–163 (Mi dvmg480)

Penalty method to solve an optimal control problem for a quasilinear parabolic equation

A. Yu. Chebotarevab, N. M. Parkbc, P. R. Mesenevb, A. E. Kovtanyukbd

a Institute for Applied Mathematics, Far Eastern Branch, Russian Academy of Sciences, Vladivostok
b Far Eastern Federal University, Vladivostok
c Amur State University, Blagoveshchensk, Amur region
d Technische Universität München

Abstract: An optimal control problem for a quasilinear parabolic equation simulating the radiative and conductive heat transfer in a bounded three-dimensional domain under constraints on the solution in a given subdomain is considered. The solvability of the optimal control problem is proved. An algorithm for solving the problem, based on the penalty method, is proposed.

Key words: Non-linear PDE system, radiative heat transfer, optimal control, penalty method.

UDC: 517.95

MSC: Primary 35K59; Secondary 49J20

Received: 17.06.2022

Language: English

DOI: 10.47910/FEMJ202217



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024