RUS  ENG
Full version
JOURNALS // Eurasian Mathematical Journal // Archive

Eurasian Math. J., 2013 Volume 4, Number 1, Pages 54–64 (Mi emj114)

This article is cited in 2 papers

New characterization of Morrey spaces

A. Gogatishvilia, R. Ch. Mustafayevbc

a Institute of Mathematics of the Academy of Sciences of the Czech Republic, Prague, Czech Republic
b Department of Mathematics, Faculty of Science and Arts, Kirikkale University, Yahsihan, Kirikkale, Turkey
c Institute of Mathematics and Mechanics, Academy of Sciences of Azerbaijan, Baku, Azerbaijan

Abstract: In this paper we prove that the norm of the Morrey space $\mathcal{M}_{p,\lambda}$ is equivalent to
$$ \sup\left\{\int_{\mathbb{R}^n}|fg|: \inf_{x\in\mathbb{R}^n}\int_0^\infty r^{\frac{n-\lambda}p-1}||g||_{L_{p'}(^\complement B(x,r))}dr\leqslant1\right\}. $$


Keywords and phrases: local Morrey-type spaces, complementary local Morrey-type spaces, associate spaces, dual spaces.

MSC: 26D15, 46E30

Received: 03.10.2011

Language: English



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024