RUS  ENG
Full version
JOURNALS // Eurasian Mathematical Journal // Archive

Eurasian Math. J., 2013 Volume 4, Number 3, Pages 8–19 (Mi emj129)

This article is cited in 1 paper

The O'Neil inequality for the Hankel convolution operator and some applications

C. Aykola, V. S. Guliyevbc, A. Serbetcia

a Ankara University, Department of Mathematics, 06100 Tandogan, Ankara, Turkey
b Ahi Evran University, Department of Mathematics, 40100, Kirsehir, Turkey
c Institute of Mathematics and Mechanics Academy of Sciences of Azerbaijan, 9, B. Vaxabzade, Baku, Republic of Azerbaijan, AZ1141

Abstract: In this paper we prove the O'Neil inequality for the Hankel (Fourier–Bessel) convolution operator and consider some of its applications. By using the O'Neil inequality we study the boundedness of the Riesz–Hankel potential operator $I_{\beta,\alpha}$, associated with the Hankel transform in the Lorentz–Hankel spaces $L_{p,r,\alpha}(0,\infty)$. We establish necessary and sufficient conditions for the boundedness of $I_{\beta,\alpha}$, from the Lorentz–Hankel spaces $L_{p,r,\alpha}(0,\infty)$ to $L_{q,s,\alpha}(0,\infty)$, $1<p<q<\infty$, $\le r\le s\le\infty$. We obtain boundedness conditions in the limiting cases $p=1$ and $p=(2\alpha+2)/\beta$. Finally, for the limiting case $p=(2\alpha+2)/\beta$ we prove an analogue of the Adams theorem on exponential integrability of $I_{\beta,\alpha}$, in $L_{(2\alpha+2)/\beta,r,\alpha}(0,\infty)$.

Keywords and phrases: Bessel differential operator, Hankel transform, $\alpha$ -rearrangement, Lorentz–Hankel spaces, Riesz–Hankel potential.

MSC: 46E30, 42B35, 47G10

Received: 19.03.2013

Language: English



© Steklov Math. Inst. of RAS, 2024