RUS  ENG
Full version
JOURNALS // Eurasian Mathematical Journal // Archive

Eurasian Math. J., 2013 Volume 4, Number 3, Pages 63–69 (Mi emj133)

New examples of Pompeiu functions

G. A. Kalyabin

Faculty of Physical, Mathematical, and Natural Sciences, Peoples’ Friendship University of Russia, 117198 Moscow, Miklukho-Maklaya 6

Abstract: For given sequence of real numbers $\{x_k\}^\infty_1\subset I:=[0,1]$ the explicitly defined function $\varphi\colon I\to I$ is constructed such that $\varphi(x_k)=0$, $k\in\mathbb N$, $\varphi(x)>0$ a.e. and all $x\in I$ are Lebesgue points of $\varphi(\cdot)$. So its primitive $f(\cdot)$ is an everywhere differentiable strictly increasing function with $f'(x_k)=0$, $k\in\mathbb N$.

Keywords and phrases: everywhere differentiable functions, strict monotonicity, dense zero set of a derivative, upper semi-continuity, Lebesgue points.

MSC: 26A24, 26A30, 26A42

Received: 15.04.2013

Language: English



© Steklov Math. Inst. of RAS, 2024