RUS  ENG
Full version
JOURNALS // Eurasian Mathematical Journal // Archive

Eurasian Math. J., 2014 Volume 5, Number 3, Pages 102–116 (Mi emj167)

This article is cited in 1 paper

A new characterization of sporadic Higman–Sims and Held groups

Y. Yang, S. Liu

School of Science, Sichuan University of Science and Engineering, Zigong Sichuan, 643000, P. R. China

Abstract: Let $G$ be a group and $\omega(G)$ be the set of element orders of $G$. Let $k\in\omega(G)$ and $s_k$ be the number of elements of order $k$ in $G$. Let $\mathrm{nse}(G)=\{s_k|k\in\omega(G)\}$. The projective special linear groups $L_3(4)$ and $L_3(5)$ are uniquely determined by $\mathrm{nse}$. In this paper, we prove that if $G$ is a group such that $\mathrm{nse}(G)=\mathrm{nse}(M)$ where $M$ is a sporadic Higman–Sims or Held group, then $G\cong M$.

Keywords and phrases: element order, sporadic Higman–Sims group, sporadic Held group, Thompson’s problem, number of elements of the same order.

MSC: 20D05, 20D08, 20D20

Received: 14.05.2014

Language: English



© Steklov Math. Inst. of RAS, 2024