RUS  ENG
Full version
JOURNALS // Eurasian Mathematical Journal // Archive

Eurasian Math. J., 2015 Volume 6, Number 1, Pages 123–131 (Mi emj189)

This article is cited in 3 papers

On the completeness and minimality of sets of Bessel functions in weighted $L^2$-spaces

B. V. Vynnyts'kyi, R. V. Khats'

Institute of Physics, Mathematics, Economics and Innovation Technologies, Drohobych Ivan Franko State Pedagogical University, 3 Stryis'ka St., 82100 Drohobych, Ukraine

Abstract: We establish a criterion for the completeness and minimality of the system $(x^{-p-1}\sqrt{x\rho_k}J_\nu(x\rho_k):k\in\mathbb{N})$ in the space $L^2((0;1); x^{2p}dx)$ where $J_\nu$ is the Bessel function of the first kind of index $\nu\geqslant1/2$, $p\in\mathbb{R}$ and $(\rho_k : k\in\mathbb{N})$ is a sequence of distinct nonzero complex numbers.

Keywords and phrases: Bessel function, entire function, complete system, minimal system, biorthogonal system.

MSC: Primary 30B60, 33C10, 34B30, 42A65; Secondary 30D10, 30D20, 44A15, 46E30

Received: 02.07.2014

Language: English



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024