RUS  ENG
Full version
JOURNALS // Eurasian Mathematical Journal // Archive

Eurasian Math. J., 2016 Volume 7, Number 2, Pages 50–67 (Mi emj223)

The composition operator in Sobolev Morrey spaces

N. Kydyrminaa, M. Lanza de Cristoforisb

a Institute of Applied Mathematics, 28a Universitetskaya St., 100028 Kazakhstan, Karaganda
b Dipartimento di Matematica, Università degli Studi di Padova, via Trieste 63, 35121 Italy, Padova

Abstract: In this paper we prove sufficent conditions on a map $f$ from the real line to itself in order that the composite map $f \circ g$ belongs to a Sobolev Morrey space of real valued functions on a domain of the $n$-dimensional space for all functions $g$ in such a space. Then we prove sufficient conditions on f in order that the composition operator $T_f$ defined by $T_f [g] \equiv f\circ g$ for all functions $g$ in the Sobolev Morrey space is continuous, Lipschitz continuous and differentiable in the Sobolev Morrey space. We confine the attention to Sobolev Morrey spaces of order up to one.

Keywords and phrases: composition operator, Morrey space, Sobolev Morrey space.

MSC: 47H30, 46E35

Received: 21.05.2016

Language: English



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024