RUS  ENG
Full version
JOURNALS // Eurasian Mathematical Journal // Archive

Eurasian Math. J., 2021 Volume 12, Number 4, Pages 43–52 (Mi emj421)

This article is cited in 2 papers

Determination of density of elliptic potential

T. Sh. Kalmenova, A. K. Lesba, U. A. Iskakovaa

a Institute of Mathematics and Mathematical Modeling, 125 Pushkin St, 050010 Almaty, Kazakhstan
b Al-Farabi Kazakh National University, 71 Al-Farabi Av, 050010 Almaty, Kazakhstan

Abstract: In this paper, using techniques of finding boundary conditions for the volume (Newton) potential, we obtain the boundary conditions for the volume potential
$$ u(x)=\int_\Omega\varepsilon(x,\xi)\rho(\xi)d\xi, $$
where $\varepsilon(x,\xi)$ is the fundamental solution of the following elliptic equation
$$ L(x,D)\varepsilon(x,\xi)=-\sum_{i,j=1}^n\frac{\partial}{\partial x_i}a_{ij}(x)\frac{\partial}{\partial x_j}\varepsilon(x,\xi)+a(x)\varepsilon(x,\xi)=\delta(x,\xi). $$
Using the explicit boundary conditions for the potential $u(x)$, the density $\rho(x)$ of this potential is uniquely determined. Also, the inverse Sommerfeld problem for the Helmholtz equation is considered.

Keywords and phrases: Helmholtz potential, fundamental solution of Helmholtz equation, potential density, potential boundary condition, inverse problem.

MSC: 47F05, 35P10

Received: 08.06.2021

Language: English

DOI: 10.32523/2077-9879-2021-12-4-43-52



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024