RUS  ENG
Full version
JOURNALS // Eurasian Mathematical Journal // Archive

Eurasian Math. J., 2021 Volume 12, Number 4, Pages 74–81 (Mi emj423)

This article is cited in 1 paper

Ideal Connes-amenability of Lau product of Banach algebras

A. Minapoora, A. Bodaghib, O. T. Mewomoc

a Department of Mathematics, Ayatollah Boroujerdi University, Boroujerd, Iran
b Department of Mathematics, Garmsar Branch, Islamic Azad University, Garmsar, Iran
c School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban, South Africa

Abstract: Let $\mathcal{A}$ and $\mathcal{B}$ be Banach algebras and $\theta$ be a non-zero character on $\mathcal{B}$. In the current paper, we study the ideal Connes-amenability of the algebra $\mathcal{A}\times_\theta\mathcal{B}$ so-called the $\tau$-Lau product algebra. We also prove that if $\mathcal{A}\times_\theta\mathcal{B}$ is ideally Connes-amenable, then both $\mathcal{A}$ and $\mathcal{B}$ are ideally Connes-amenable. As a result, we show that $l^1(S)\times_\theta l^1(S)$ is ideally Connes-amenable, where $S$ is a Rees matrix semigroup.

Keywords and phrases: amenability, derivation, ideal amenability, ideal Connes-amenability, Lau product algebra.

MSC: Primary 46H25, 46H20; Secondary 46H35

Received: 24.07.2020

Language: English

DOI: 10.32523/2077-9879-2021-12-4-74-81



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024