RUS  ENG
Full version
JOURNALS // Eurasian Mathematical Journal // Archive

Eurasian Math. J., 2022 Volume 13, Number 1, Pages 32–43 (Mi emj430)

Zeros of lacunary type polynomials

S. Das

Department of Mathematics, Kurseong College, Dow Hill Road, Kurseong, 734203 West Bengal, India

Abstract: Using Schwarz's lemma, Mohammad (1965) proved that all zeros of the polynomial
$$ f(z)=a_0+a_1z+\dots+a_{n-1}z^{n-1}+a_nz^n $$
with real or complex coefficients lie in the closed disc
$$ |z|\leqslant\frac{M'}{|a_n|}\text{ if } |a_n|\leqslant M', $$
where
$$ M'=\max_{|z|=1}|a_0+a_1z+\dots+a_{n-1}z^{n-1}|. $$
In this paper, we present new results on the location of zeros of the lacunary type polynomial
$$ p(z)=a_0+a_1z+\dots+a_pz^p+a_nz^n,\quad p<n. $$
In particular, for $p = n -1$, our first result implies an important corollary which sharpens the above result. Also, we described some regions in which all zeros of $p(z)$ are simple. In many cases, our results give better bounds for the location of polynomial zeros than the known ones.

Keywords and phrases: zeros, lacunary polynomials, annular region.

UDC: 30C15, 30C10, 26C10

Received: 04.08.2020
Revised: 07.06.2021

Language: English

DOI: 10.32523/2077-9879-2022-13-1-32-43



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024