RUS  ENG
Full version
JOURNALS // Eurasian Mathematical Journal // Archive

Eurasian Math. J., 2022 Volume 13, Number 2, Pages 18–36 (Mi emj435)

Minimax shrinkage estimators and estimators dominating the James-Stein estimator under the balanced loss function

A. Benkhaledab, A. Hamdaouicd, M. Terbecheed

a Department of Biology, Mascara University, Mascara, Algerie
b Laboratory of Stochastic Models, Statistics and Applications, University Tahar Moulay of Saida, Bp 305, Route de Mamounia 29000, Mascara, Algerie
c Laboratory of Statistics and Random Modelisations of University Abou Bekr Belkaid (LSMA), Tlemcen, El Mnaouar, BP 1505, Bir El Djir 31000, Oran, Algeria
d Department of Mathematics, University of Sciences and Technology, Mohamed Boudiaf, Oran
e Laboratory of Analysis and Application of Radiation (LAAR), USTO-MB, El Mnaouar, BP 1505, Bir El Djir 31000, Oran, Algeria

Abstract: This paper is dealing with the shrinkage estimators of a multivariate normal mean and their minimaxity properties under the balanced loss function. We present here two different classes of estimators: the first which generalizes the James-Stein estimator, and show that any estimator of this class dominates the maximum likelihood estimator (MLE), consequently it is minimax, and the second dominates the James-Stein estimator and we conclude that any estimator of this class is also minimax.

Keywords and phrases: Balanced loss function, James-Stein estimator, minimax estimator, multivariate Gaussian random variable, non-central chi-square distribution, shrinkage estimators.

MSC: Primary 62C20; Secondary 62H10, 62J07

Received: 30.06.2021

Language: English

DOI: 10.32523/2077-9879-2022-13-2-18-36



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024