RUS  ENG
Full version
JOURNALS // Eurasian Mathematical Journal // Archive

Eurasian Math. J., 2011 Volume 2, Number 2, Pages 5–30 (Mi emj50)

This article is cited in 6 papers

Boundedness of the anisotropic fractional maximal operator in anisotropic local Morrey-type spaces

A. Akbuluta, I. Ekincioglub, A. Serbetcic, T. Tararykovad

a Ahi Evran University, Department of Mathematics, Kirşehir, Turkey
b Department of Mathematics, Dumlupinar University, Kütahya, Turkey
c Ankara University, Department of Mathematics, Tandogan-Ankara, Turkey
d Faculty of Mechanics and Mathematics, L. N. Gumilyov Eurasian National University, Astana, Kazakhstan

Abstract: In this paper we study the boundedness of the anisotropic fractional maximal operator in anisotropic local Morrey-type spaces. We reduce this problem to the problem of boundedness of the supremal operator in weighted $L_p$-spaces on the cone of non-negative non-decreasing functions. This makes it possible to derive sharp sufficient conditions for boundedness for all admissible values of the numerical parameters, which, for a certain range of the numerical parameters, coincide with the necessary ones.

Keywords and phrases: anisotropic fractional maximal operator, anisotropic local and global Morrey-type spaces, supremal operator on the cone of monotonic functions.

MSC: 42B20, 42B25, 42B35

Received: 05.03.2011

Language: English



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024