RUS  ENG
Full version
JOURNALS // Eurasian Mathematical Journal // Archive

Eurasian Math. J., 2011 Volume 2, Number 3, Pages 42–66 (Mi emj61)

This article is cited in 3 papers

Nikol'skii–Besov and Lizorkin–Triebel spaces constructed on the base of the multidimensional Fourier–Bessel transform

V. S. Guliyeva, A. Serbetcib, A. Akbuluta, Y. Y. Mammadovc

a Department of Mathematics, Ahi Evran University, Kırşehir, Turkey
b Department of Mathematics, Ankara University, Ankara, Turkey
c Institute of Mathematics and Mechanics, Academy of Sciences of Azerbaijan, Baku, Azerbaijan

Abstract: In this paper we define the Nikol'skii–Besov and Lizorkin–Triebel spaces ($B$-Nikol'skii–Besov and $B$-Lizorkin–Triebel spaces) in the context of the Fourier–Bessel harmonic analysis. We establish some basic properties of the $B$-Nikol'skii–Besov and $B$-Lizorkin–Triebel spaces such as embedding theorems, the lifting property, and characterizing of the Bessel potentials in terms of the $B$-Lizorkin–Triebel spaces. We prove the inclusion and the density of the Schwartz space in the $B$-Nikol'skii–Besov and $B$-Lizorkin–Triebel spaces and prove an interpolation formula for these spaces by the real method. We also prove the Young inequality for the $B$-convolution operators in the $B$-Bessel potential spaces. Finally, we give some applications involving the Laplace–Bessel differential operator.

Keywords and phrases: $B$-Nikol'skii–Besov spaces, $B$-Lizorkin–Triebel spaces, Fourier–Bessel transform, $B$-Bessel potential spaces.

MSC: 42B35, 44A20, 46E35, 46F12

Received: 16.06.2011

Language: English



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024