RUS  ENG
Full version
JOURNALS // Eurasian Mathematical Journal // Archive

Eurasian Math. J., 2010 Volume 1, Number 1, Pages 111–122 (Mi emj9)

This article is cited in 8 papers

On the sharpneess of a certain spectral stability estimate for the Dirichlet Laplacian

P. D. Lamberti, M. Perin

Dipartamento di Mathematica Pura ed Applicata, Università degli Studi di Padova, Padova, Italy

Abstract: We consider a spectral stability estimate by Burenkov and Lamberti concerning the variation of the eigenvalues of second order uniformly elliptic operators on variable open sets in the $N$-dimensional euclidean space, and we prove that it is sharp for any dimension $N$. This is done by studying the eigenvalue problem for the Dirichlet Laplacian on special open sets inscribed in suitable spherical cones.

Keywords and phrases: elliptic equations, Dirichlet boundary conditions, stability of eigenvalues, sharp estimates, domain perturbation.

MSC: 35P15, 35J40, 47A75, 47B25

Received: 10.09.2009

Language: English



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024