RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya // Archive

Funktsional. Anal. i Prilozhen., 2004 Volume 38, Issue 2, Pages 91–94 (Mi faa112)

This article is cited in 7 papers

Brief communications

When Is a Sum of Partial Reflections Equal to a Scalar Operator?

A. S. Mellit, V. I. Rabanovich, Yu. S. Samoilenko

Institute of Mathematics, Ukrainian National Academy of Sciences

Abstract: We describe the set $\widetilde{W}_n$ of values of the parameter $\alpha\in\mathbb{R}$ for which there exists a Hilbert space $H$ and $n$ partial reflections $A_1,\dots,A_n$ (self-adjoint operators such that $A_k^3=A_k$ or, which is the same, self-adjoint operators whose spectra belong to the set $\{-1,0,1\}$) whose sum is equal to the scalar operator $\alpha I_H$.

Keywords: projection, reflection, partial reflection, self-adjoint operator, *-representation.

UDC: 517.98

Received: 12.02.2003

DOI: 10.4213/faa112


 English version:
Functional Analysis and Its Applications, 2004, 38:2, 157–160

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024