RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya // Archive

Funktsional. Anal. i Prilozhen., 2004 Volume 38, Issue 3, Pages 70–78 (Mi faa118)

This article is cited in 14 papers

On the Discrete Spectrum of a Family of Differential Operators

M. Z. Solomyak

Weizmann Institute of Science

Abstract: We consider a family $\mathbf{A}_\alpha$ of differential operators in $L^2(\mathbb{R}^2)$ depending on a parameter $\alpha\ge0$. The operator $\mathbf{A}_\alpha$ formally corresponds to the quadratic form
$$ \mathbf{a}_\alpha[U]=\int_{\mathbb{R}^2}\biggl(|U_x|^2+\frac{1}{2}(|U_y|^2 +y^2|U|^2)\biggr)\,dx\,dy +\alpha\int_\mathbb{R}y|U(0,y)|^2\,dy. $$
The perturbation determined by the second term in this sum is only relatively bounded but not relatively compact with respect to the unperturbed quadratic form $\mathbf{a}_0$.
The spectral properties of $\mathbf{A}_\alpha$ strongly depend on $\alpha$. In particular, $\sigma(\mathbf{A}_0)=[1/2,\infty)$; for $0<\alpha<\sqrt 2$, finitely many eigenvalues $l_n<1/2$ are added to the spectrum; and for $\alpha>\sqrt2$ (where the quadratic form approach does not apply), the spectrum is purely continuous and coincides with $\mathbb{R}$. We study the asymptotic behavior of the number of eigenvalues as $\alpha\nearrow\sqrt 2$ and reduce this problem to the problem on the spectral asymptotics for a certain Jacobi matrix.

Keywords: discrete spectrum, perturbation, Jacobi matrix.

UDC: 517.97

Received: 30.01.2004

DOI: 10.4213/faa118


 English version:
Functional Analysis and Its Applications, 2004, 38:3, 217–223

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024