RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya // Archive

Funktsional. Anal. i Prilozhen., 2004 Volume 38, Issue 4, Pages 86–90 (Mi faa130)

This article is cited in 59 papers

Brief communications

On Homogenization of Periodic Parabolic Systems

T. A. Suslina

St. Petersburg State University, Faculty of Physics

Abstract: We study homogenization in the small period limit for a periodic parabolic Cauchy problem in $\mathbb{R}^d$ and prove that the solutions converge in $L_2(\mathbb{R}^d)$ to the solution of the homogenized problem for each $t>0$. For the $L_2(\mathbb{R}^d)$-norm of the difference, we obtain an order-sharp estimate uniform with respect to the $L_2(\mathbb{R}^d)$-norm of the initial value.

Keywords: periodic parabolic system, Cauchy problem, homogenization, effective medium.

UDC: 517.956

Received: 28.08.2004

DOI: 10.4213/faa130


 English version:
Functional Analysis and Its Applications, 2004, 38:4, 309–312

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024