Factorization of Operator Functions in a Hilbert Space
A. M. Gomilko Institute of Hydromechanics of NAS of Ukraine
Abstract:
Let
$H$ be a Hilbert space,
$L=L(H)$ the algebra of bounded linear operators in
$H$,
$I$ the identity operator, and
$H_\alpha^{+}(\Gamma,L)$ the algebra of operator functions defined on the circle
$\Gamma=\{|\zeta|=1\}$, satisfying the Hölder condition with exponent
$\alpha\in (0,1)$, ranging in
$L$, and admitting holomorphic continuation to the disk
$|\lambda|<1$. We show that if
$A(\zeta)\in H_\alpha^{+}(\Gamma,L)$ and if, for any
$\zeta\in\Gamma$, the point
$z=0$ does not belong to the convex hull of the spectrum of
$A(\zeta)$, then the factorization
\begin{gather*}
A(\lambda)=A_{1,+}(\lambda)(\lambda^k I+\sum_{n=0}^{k-1}\lambda^n B_n)
A_{2,+}(\lambda),\qquad|\lambda|\le1,\\
A_{j,+}(\lambda)\in H^{+}_\alpha(\Gamma, L),\quad j=1,2, \quad B_n\in L, \quad
k=\operatorname{ind}_\Gamma\!A(\zeta),
\end{gather*}
holds, where the operators
$A_{j,+}(\lambda)$ are invertible for
$|\lambda|\le1$.
Keywords:
Hilbert space, convex hull of the spectrum of operator, index of operator function, factorization of operator functions.
UDC:
517.9
Received: 25.03.2002
DOI:
10.4213/faa133