RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya // Archive

Funktsional. Anal. i Prilozhen., 2003 Volume 37, Issue 1, Pages 73–77 (Mi faa137)

This article is cited in 16 papers

Brief communications

Homological Dimensions of the Algebra Formed by Entire Functions of Elements of a Nilpotent Lie Algebra

A. A. Dosiev

Institute of Mathematics and Mechanics, Azerbaijan National Academy of Sciences

Abstract: This note deals with homological characteristics of algebras of holomorphic functions of noncommuting variables generated by a finite-dimensional nilpotent Lie algebra $\mathfrak{g}$. It is proved that the embedding $\mathcal{U}(\mathfrak{g})\to\mathcal{O}_{\mathfrak{g}}$ of the universal enveloping algebra $\mathcal{U}(\mathfrak{g})$ of $\mathfrak{g}$ into its Arens–Michael hull $\mathcal{O}_{\mathfrak{g}}$ is an absolute localization in the sense of Taylor provided that $[\mathfrak{g},[\mathfrak{g},\mathfrak{g}]]=0$.

Keywords: Arens–Michael hull, projective homological dimension, nilpotent Lie algebra, localization, Taylor spectrum.

UDC: 517.55+517.986

Received: 23.11.2001

DOI: 10.4213/faa137


 English version:
Functional Analysis and Its Applications, 2003, 37:1, 61–64

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024