RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya // Archive

Funktsional. Anal. i Prilozhen., 2006 Volume 40, Issue 1, Pages 30–42 (Mi faa16)

This article is cited in 6 papers

On the Number of Rational Points on a Strictly Convex Curve

F. V. Petrov

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences

Abstract: Let $\gamma$ be a bounded convex curve on the plane. Then $\#(\gamma\cap(\mathbb{Z}/n)^2)=o(n^{2/3})$. This strengthens the classical result due to Jarník (the upper bound $cn^{2/3}$) and disproves the conjecture on the existence of a so-called universal Jarník curve.

Keywords: convex curve, lattice point, affine length.

UDC: 511.9

Received: 17.01.2005

DOI: 10.4213/faa16


 English version:
Functional Analysis and Its Applications, 2006, 40:1, 24–33

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025