RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya // Archive

Funktsional. Anal. i Prilozhen., 2002 Volume 36, Issue 1, Pages 36–58 (Mi faa177)

This article is cited in 17 papers

Sharp Pointwise Interpolation Inequalities for Derivatives

V. G. Maz'ya, T. O. Shaposhnikova

Linköping University

Abstract: We prove new pointwise inequalities involving the gradient of a function $u\in C^1(\mathbb{R}^n)$, the modulus of continuity $\omega$ of the gradient $\nabla u$, and a certain maximal function $\mathcal{M}^{\diamond}u$ and show that these inequalities are sharp. A simple particular case corresponding to $n=1$ and $\omega(r)=r$ is the Landau type inequality
$$ |u'(x)|^2\le\frac83\,\mathcal{M}^{\diamond}u(x)\mathcal{M}^{\diamond}u''(x), $$
where the constant $8/3$ is best possible and
$$ \mathcal{M}^{\diamond}u(x)=\sup_{r>0}\frac1{2r}\bigg|\int_{x-r}^{x+r}\operatorname{sign}(y-x)u(y)\,dy\bigg|. $$


UDC: 517.5

Received: 20.08.2001

DOI: 10.4213/faa177


 English version:
Functional Analysis and Its Applications, 2002, 36:1, 30–48

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024