RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya // Archive

Funktsional. Anal. i Prilozhen., 2001 Volume 35, Issue 2, Pages 12–23 (Mi faa242)

This article is cited in 9 papers

The Isoperimetric Inequality on Manifolds of Conformally Hyperbolic Type

V. A. Zoricha, V. M. Kesel'manb

a M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b Moscow State Industrial University

Abstract: We prove that the maximal isoperimetric function on a Riemannian manifold of conformally hyperbolic type can be reduced to the linear canonical form $P(x)=x$ by a conformal change of the Riemannian metric. In other words, the isoperimetric inequality $P(V(D))\le S(\partial D)$, relating the volume $V(D)$ of a domain $D$ to the area $S(\partial D)$ of its boundary, can be reduced to the form $V(D)\le S(\partial D)$, known for the Lobachevskii hyperbolic space.

UDC: 517.54+514.774

Received: 01.06.2000

DOI: 10.4213/faa242


 English version:
Functional Analysis and Its Applications, 2001, 35:2, 90–99

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025