Abstract:
We study the Young lattice with the edge multiplicities $\varkappa_\alpha(\lambda,\Lambda)$ arising in the simplest Pieri formula for Jack symmetric polynomials $P_\lambda(x;\alpha)$ with parameter $\alpha$. A new proof of Stanley's $\alpha$-version of the hook formula is given. We also prove the formula
$$
\sum_\Lambda (c_\alpha(b)+u)(c_\alpha(b)+v)\varkappa_\alpha(\lambda,\Lambda)\varphi(\Lambda)=
(n\alpha+uv)\varphi(\lambda),
$$
where $\varphi(\lambda)=\prod_{b\in\lambda}(a(b)\alpha+l(b)+1)^{-1}$ and $c_\alpha(b)$ is the $\alpha$-contents of the new box $b=\Lambda\setminus\lambda$.