RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya // Archive

Funktsional. Anal. i Prilozhen., 2007 Volume 41, Issue 2, Pages 3–23 (Mi faa2859)

This article is cited in 12 papers

Homogenization of the Stationary Periodic Maxwell System in the Case of Constant Permeability

M. Sh. Birman, T. A. Suslina

St. Petersburg State University, Faculty of Physics

Abstract: The homogenization problem in the small period limit for the stationary periodic Maxwell system in $\mathbb{R}^3$ is considered. It is assumed that the permittivity $\eta^\varepsilon(\mathbf{x})=\eta(\varepsilon^{-1}\mathbf{x})}$, $\varepsilon>0$, is a rapidly oscillating positive matrix function and the permeability $\mu_0$ is a constant positive matrix. For all four physical fields (the electric and magnetic field intensities, the electric displacement field, and the magnetic flux density), we obtain uniform approximations in the $L_2(\mathbb{R}^3)$-norm with order-sharp remainder estimates.

Keywords: periodic Maxwell operator, homogenization, effective medium, corrector.

UDC: 517.956

Received: 30.11.2006

DOI: 10.4213/faa2859


 English version:
Functional Analysis and Its Applications, 2007, 41:2, 81–98

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024