RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya // Archive

Funktsional. Anal. i Prilozhen., 2007 Volume 41, Issue 3, Pages 17–33 (Mi faa2866)

This article is cited in 3 papers

Direct and Inverse Asymptotic Scattering Problems for Dirac–Krein Systems

D. Z. Arova, H. Dymb

a South Ukrainian State K. D. Ushynsky Pedagogical University
b Weizmann Institute of Science

Abstract: The asymptotic scattering matrix $s_{\varepsilon}(\lambda)$ for a Dirac–Krein system with signature matrix $J=\operatorname{diag}\{I_p,-I_p\}$, integrable potential, and the boundary condition $u_1(0,\lambda)=u_2(0,\lambda)\varepsilon(\lambda)$ with a coefficient $\varepsilon(\lambda)$ that belongs to the Schur class of holomorphic contractive $p\times p$ matrix-valued functions in the open upper half-plane is defined. The inverse asymptotic scattering problem for a given $s_{\varepsilon}$ is analyzed by Krein's method. Earlier studies by Krein and others focused on the case in which $\varepsilon=I_p$ (or a constant unitary matrix).

Keywords: inverse problem, asymptotic scattering matrix, matrix-valued function, Hilbert space, linear bounded operator, Nehari problem, Schur problem, Hankel operator, Toeplitz operator, Wiener class.

UDC: 517.984.54

Received: 02.03.2007

DOI: 10.4213/faa2866


 English version:
Functional Analysis and Its Applications, 2007, 41:3, 181–195

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024