RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya // Archive

Funktsional. Anal. i Prilozhen., 2007 Volume 41, Issue 4, Pages 60–69 (Mi faa2879)

This article is cited in 1 paper

$K$-Finite Matrix Elements of Irreducible Harish-Chandra Modules are Hypergeometric

Yu. A. Neretinab

a Institute for Theoretical and Experimental Physics (Russian Federation State Scientific Center)
b University of Vienna

Abstract: We show that each $K$-finite matrix element of an irreducible infinite-dimensional representation of a semisimple Lie group can be obtained from spherical functions by a finite collection of operations. In particular, each matrix element admits a finite expression in the terms of the Heckman–Opdam hypergeometric functions.

Keywords: semisimple Lie groups, Harish-Chandra modules, infinite-dimensional representations, spherical functions, matrix elements, special functions, Heckman–Opdam hypergeometric functions.

UDC: 512.81+517.58

Received: 31.03.2006

DOI: 10.4213/faa2879


 English version:
Functional Analysis and Its Applications, 2007, 41:4, 295–302

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024