Abstract:
Let $L$ be a uniformly elliptic linear second order differential operator in divergence form with bounded measurable real coefficients in a bounded domain $G\subset\mathbb{R}^n$ ($n\ge 2$). We define classes of continuous functions in $G$ that contain generalized solutions of the equation $Lf=0$ and have the property that the compact sets removable for such solutions in these classes can be completely described in terms of Hausdorff measures.
Keywords:removable singularity, elliptic operator, generalized solution, Green function, Hausdorff measure.