RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya // Archive

Funktsional. Anal. i Prilozhen., 2008 Volume 42, Issue 2, Pages 78–81 (Mi faa2905)

This article is cited in 2 papers

Brief communications

A Generalized Khintchine Inequality in Rearrangement Invariant Spaces

S. V. Astashkin

Samara State University

Abstract: Let $X$ be a separable or maximal rearrangement invariant space on $[0,1]$. Necessary and sufficient conditions are found under which the generalized Khintchine inequality
\begin{equation*} \bigg\|\sum_{k=1}^\infty f_k\bigg\|_{X}\le C\bigg\|\bigg(\sum_{k=1}^\infty f_k^2\bigg)^{1/2}\bigg\|_X \end{equation*}
holds for an arbitrary sequence $\{f_k\}_{k=1}^\infty\subset X$ of mean zero independent variables. Moreover, the subspace spanned in a rearrangement invariant space by the Rademacher system with independent vector coefficients is studied.

Keywords: Khintchine inequality, rearrangement invariant space, Rademacher system, independent functions, Kruglov property, Boyd indices.

UDC: 517.982.27

Received: 25.10.2006

DOI: 10.4213/faa2905


 English version:
Functional Analysis and Its Applications, 2008, 42:2, 144–147

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025