RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya // Archive

Funktsional. Anal. i Prilozhen., 2008 Volume 42, Issue 3, Pages 45–52 (Mi faa2911)

This article is cited in 29 papers

On the Completeness of the System of Root Vectors of the Sturm–Liouville Operator with General Boundary Conditions

M. M. Malamud

Institute of Applied Mathematics and Mechanics, Ukraine National Academy of Sciences

Abstract: We study general boundary value problems with nondegenerate characteristic determinant $\Delta(\lambda)$ for the Sturm–Liouville equation on the interval $[0,1]$. Necessary and sufficient conditions for the completeness of root vectors are obtained in terms of the potential. In particular, it is shown that if $\Delta(\lambda)\ne\mathrm{const}$, $q(\cdot)\in C^k[0,1]$ for some $k\ge 0$, and $q^{(k)}(0)\ne(-1)^kq^{(k)}(1)$, then the system of root vectors is complete and minimal in $L^p[0,1]$ for $p\in[1,\infty)$.

Keywords: Sturm–Liouville equation, completeness of the system of root vectors, nondegenerate boundary conditions.

UDC: 517.43

Received: 14.02.2007

DOI: 10.4213/faa2911


 English version:
Functional Analysis and Its Applications, 2008, 42:3, 198–204

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025