RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya // Archive

Funktsional. Anal. i Prilozhen., 2008 Volume 42, Issue 3, Pages 71–75 (Mi faa2914)

Brief communications

On Jordan Ideals and Submodules: Algebraic and Analytic Aspects

M. Bresara, È. V. Kissinb, V. S. Shulmanc

a University of Maribor
b London Metropolitan University
c Vologda State Technical University

Abstract: Let $\mathcal{A}$ be an algebra, and let $X$ be an arbitrary $\mathcal{A}$-bimodule. A linear space $Y\subset X$ is called a Jordan $\mathcal{A}$-submodule if $Ay+yA\in Y$ for all $A\in\mathcal{A}$ and $y\in Y$. (For $X=\mathcal{A}$, this coincides with the notion of a Jordan ideal.) We study conditions under which Jordan submodules are subbimodules. General criteria are given in the purely algebraic situation as well as for the case of Banach bimodules over Banach algebras. We also consider symmetrically normed Jordan submodules over $C^*$-algebras. It turns out that there exist $C^*$-algebras in which not all Jordan ideals are ideals.

Keywords: algebra, ideal, bimodule, Jordan ideal, $C^*$-algebra, symmetrically normed ideal.

UDC: 517.986.2+517.986.9

Received: 24.12.2006

DOI: 10.4213/faa2914


 English version:
Functional Analysis and Its Applications, 2008, 42:3, 220–223

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024