RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya // Archive

Funktsional. Anal. i Prilozhen., 2008 Volume 42, Issue 3, Pages 81–84 (Mi faa2918)

This article is cited in 9 papers

Brief communications

On the Uniform Kreiss Resolvent Condition

A. M. Gomilkoa, Ya. Zemanekb

a Institute of Hydromechanics of NAS of Ukraine
b Institute of Mathematics of the Polish Academy of Sciences

Abstract: Let $B$ be a Banach space with norm ${\|\cdot\|}$ and identity operator $I$. We prove that, for a bounded linear operator $T$ in $B$, the strong Kreiss resolvent condition
$$ \|(T-\lambda I)^{-k}\|\le\frac{M}{(|\lambda|-1)^k},\qquad|\lambda|>1,\ k=1,2,\dots, $$
implies the uniform Kreiss resolvent condition
$$ \bigg\|\sum_{k=0}^n \frac{T^k}{\lambda^{k+1}}\bigg\|\le\frac{L}{|\lambda|-1},\qquad|\lambda|>1,\ n=0,1,2,\dotsc. $$
We establish that an operator $T$ satisfies the uniform Kreiss resolvent condition if and only if so does the operator $T^m$ for each integer $m\ge 2$.

Keywords: Banach space, bounded linear operator, Kreiss resolvent condition.

UDC: 517.9

Received: 19.03.2007

DOI: 10.4213/faa2918


 English version:
Functional Analysis and Its Applications, 2008, 42:3, 230–233

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024