RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya // Archive

Funktsional. Anal. i Prilozhen., 2008 Volume 42, Issue 4, Pages 72–82 (Mi faa2928)

This article is cited in 2 papers

Family Algebras and Generalized Exponents for Polyvector Representations of Simple Lie Algebras of Type $B_n$

A. A. Kirillovab

a Institute for Information Transmission Problems, Russian Academy of Sciences
b University of Pennsylvania

Abstract: We give an explicit formula for the exterior powers $\wedge^k\pi_1$ of the defining representation $\pi_1$ of the simple Lie algebra $\mathfrak{so}(2n+1,\mathbb{C})$. We use the technique of family algebras. All representations in question are children of the spinor representation $\sigma$ of $\mathfrak{so}(2n+1,\mathbb{C})$. We also give a survey of main results on family algebras.

Keywords: family algebra, generalized exponent, representation of Lie algebra, spinor representation.

UDC: 512.815.1

Received: 26.06.2008

DOI: 10.4213/faa2928


 English version:
Functional Analysis and Its Applications, 2008, 42:4, 308–316

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025