RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya // Archive

Funktsional. Anal. i Prilozhen., 2008 Volume 42, Issue 4, Pages 105–108 (Mi faa2930)

This article is cited in 2 papers

Brief communications

The Limit Absorption Principle and Homogenization Procedure for Periodic Elliptic Operators

M. S. Birman, T. A. Suslina

St. Petersburg State University, Faculty of Physics

Abstract: For a periodic matrix elliptic operator $\mathcal{A}_\varepsilon$ with (${\mathbf x}/\varepsilon$-dependent) rapidly oscillating coefficients, a certain analog of the limit absorption principle is proved. It is shown that the bordered resolvent $\langle{\mathbf x}\rangle^{-1/2-\delta}(\mathcal{A}_\varepsilon-(\eta\pm i\varepsilon^\sigma)I)^{-1}\langle{\mathbf x}\rangle^{-1/2-\delta}$ has a limit in the operator norm in $L_2$ as $\varepsilon\to 0$ provided that $\eta>0$, $\delta>0$, and $0<\sigma<1/2$.

Keywords: periodic differential operators, homogenization, effective operator, limit absorption principle.

UDC: 517.956

Received: 01.08.2008

DOI: 10.4213/faa2930


 English version:
Functional Analysis and Its Applications, 2008, 42:4, 336–339

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025