RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya // Archive

Funktsional. Anal. i Prilozhen., 2008 Volume 42, Issue 4, Pages 2–23 (Mi faa2933)

This article is cited in 15 papers

Spectral Boundary Value Problems in Lipschitz Domains for Strongly Elliptic Systems in Banach Spaces $H_p^\sigma$ and $B_p^\sigma$

M. S. Agranovich

Moscow State Institute of Electronics and Mathematics

Abstract: In a bounded Lipschitz domain, we consider a strongly elliptic second-order equation with spectral parameter without assuming that the principal part is Hermitian. For the Dirichlet and Neumann problems in a weak setting, we prove the optimal resolvent estimates in the spaces of Bessel potentials and the Besov spaces. We do not use surface potentials. In these spaces, we derive a representation of the resolvent as a ratio of entire analytic functions with sharp estimates of their growth and prove theorems on the completeness of the root functions and on the summability of Fourier series with respect to them by the Abel–Lidskii method. Preliminarily, such questions for abstract operators in Banach spaces are discussed. For the Steklov problem with spectral parameter in the boundary condition, we obtain similar results. We indicate applications of the resolvent estimates to parabolic problems in a Lipschitz cylinder. We also indicate generalizations to systems of equations.

Keywords: strong ellipticity, Lipschitz domain, potential space, Besov space, weak solution, optimal resolvent estimate, determinant of a compact operator, completeness of root functions, Abel–Lidskii summability, parabolic semigroup.

UDC: 517.98+517.95

Received: 28.05.2008

DOI: 10.4213/faa2933


 English version:
Functional Analysis and Its Applications, 2008, 42:4, 249–267

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025