RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya // Archive

Funktsional. Anal. i Prilozhen., 2009 Volume 43, Issue 2, Pages 88–91 (Mi faa2935)

This article is cited in 4 papers

Brief communications

Pairwise $\varepsilon$-Independence of the Sets $T^iA$ for a Mixing Transformation $T$

V. V. Ryzhikov

M. V. Lomonosov Moscow State University

Abstract: If an ergodic automorphism $T$ of a probability space is not partially rigid, then for any numbers $a\in(0,1)$ and $\varepsilon>0$ there exists a set $A$ such that all sets $T^i\!A$, $i>0$, are pairwise $\varepsilon$-independent.

Keywords: mixing, partial rigidity, measure-preserving transformation, $\varepsilon$-independence.

UDC: 517.9

Received: 07.05.2007

DOI: 10.4213/faa2935


 English version:
Functional Analysis and Its Applications, 2009, 43:2, 155–157

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024