Abstract:
We start from an interpretation of the $BC_2$-symmetric “Type I” (elliptic Dixon) elliptic hypergeometric integral evaluation as a formula for a Casoratian of the elliptic hypergeometric equation and then generalize this construction to higher-dimensional integrals and higher-order hypergeometric functions. This allows us to prove the corresponding formulas for the elliptic beta integral and symmetry transformation in a new way, by proving that both sides satisfy the same difference equations and that these difference equations satisfy a needed Galois-theoretic condition ensuring the uniqueness of the simultaneous solution.