RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya // Archive

Funktsional. Anal. i Prilozhen., 2010 Volume 44, Issue 2, Pages 87–91 (Mi faa2982)

This article is cited in 33 papers

Brief communications

One-dimensional Schrödinger operator with $\delta$-interactions

A. S. Kostenkoa, M. M. Malamudb

a School of Mathematical Sciences, Dublin Institute of Technology
b Institute of Applied Mathematics and Mechanics, Ukraine National Academy of Sciences, Donetsk

Abstract: The one-dimensional Schrödinger operator $\mathrm{H}_{X,\alpha}$ with $\delta$-interactions on a discrete set is studied in the framework of the extension theory. Applying the technique of boundary triplets and the corresponding Weyl functions, we establish a connection of these operators with a certain class of Jacobi matrices. The discovered connection enables us to obtain conditions for the self-adjointness, lower semiboundedness, discreteness of the spectrum, and discreteness of the negative part of the spectrum of the operator $\mathrm{H}_{X,\alpha}$.

Keywords: Schrödinger operator, point interactions, self-adjointness, lower semiboundedness, discreteness.

UDC: 517.984

Received: 08.07.2009

DOI: 10.4213/faa2982


 English version:
DOI: 10.1007/s10688-010-0019-9

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024