RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya // Archive

Funktsional. Anal. i Prilozhen., 2011 Volume 45, Issue 2, Pages 93–96 (Mi faa3021)

This article is cited in 2 papers

Brief communications

Lipschitz Functions, Schatten Ideals, and Unbounded Derivations

È. V. Kissina, D. S. Potapovb, F. A. Sukochevb, V. S. Shulmanc

a STORM Research Center, London Metropolitan University
b University of New South Wales, Australia
c Vologda State Technical University

Abstract: It is proved that, for any Lipschitz function $f(t_1,\dots,t_n)$ of $n$ variables, the corresponding map $f_{op}\colon(A_1,\dots,A_n)\mapsto f(A_1,\dots,A_n)$ on the set of all commutative $n$-tuples of Hermitian operators on a Hilbert space is Lipschitz with respect to the norm of each Schatten ideal $\mathcal{S}^p$, $p\in(1,\infty)$. This result is applied to the functional calculus of normal operators and contractions. It is shown that Lipschitz functions of one variable preserve domains of closed derivations with values in $\mathcal{S}^p$. It is also proved that the map $f_{op}$ is Fréchet differentiable in the norm of $\mathcal{S}^p$ if $f$ is continuously differentiable.

Keywords: functions of operators, operator Lipschitz functions, Schatten classes, unbounded derivations.

UDC: 517.983.2+517.984.4

Received: 10.04.2010

DOI: 10.4213/faa3021


 English version:
Functional Analysis and Its Applications, 2011, 45:2, 157–159

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025