RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya // Archive

Funktsional. Anal. i Prilozhen., 2011 Volume 45, Issue 4, Pages 16–31 (Mi faa3050)

This article is cited in 6 papers

Cohomology of a flag variety as a Bethe algebra

A. N. Varchenkoa, R. Rimányia, V. O. Tarasovbc, V. V. Schechtmand

a Department of Mathematics, University of North Carolina at Chapel Hill, USA
b Department of Mathematical Sciences, Indiana University–Purdue University Indianapolis, Indianapolis, USA
c St. Petersburg Department of Steklov Institute of Mathematics, St. Petersburg, Russia
d Institute de Mathématique de Toulouse, Toulouse, France

Abstract: We interpret the equivariant cohomology $H^*_{GL_n}(\mathcal{F}_{\boldsymbol\lambda},mathbb{C})$ of a partial flag variety $\mathcal{F}_{\boldsymbol\lambda}$ parametrizing chains of subspaces $0=F_0\subset F_1\subset\dots\subset F_N=\mathbb{C}^n$, $\dim F_i/F_{i-1}=\lambda_i$, as the Bethe algebra $\mathcal{B}^\infty(\mathcal{V}^\pm_{\boldsymbol\lambda})$ of the $\mathfrak{gl}_N$-weight subspace $\mathcal{V}^\pm_{\boldsymbol\lambda}$ of a $\mathfrak{gl}_N[t]$-module $\mathcal{V}^\pm$.

Keywords: Gaudin model, Bethe algebra, cohomology of flag varieties.

UDC: 512.734+512.815+512.554.32

Received: 22.03.2011

DOI: 10.4213/faa3050


 English version:
Functional Analysis and Its Applications, 2011, 45:4, 252–264

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024