RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya // Archive

Funktsional. Anal. i Prilozhen., 2000 Volume 34, Issue 3, Pages 1–16 (Mi faa307)

This article is cited in 45 papers

Uniformization of Jacobi Varieties of Trigonal Curves and Nonlinear Differential Equations

V. M. Buchstabera, D. V. Leikinb, V. Z. Ènol'skiib

a M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b Institute of Magnetism, National Academy of Sciences of Ukraine

Abstract: We obtain an explicit realization of the Jacobi and Kummer varieties for trigonal curves of genus $g$ ($\gcd(g,3)=1$) of the form
$$ y^3=x^{g+1}+\sum_{\alpha,\beta}\lambda_{3\alpha +(g+1)\beta}x^{\alpha}y^{\beta},\qquad 0\le3\alpha+(g+1)\beta <3g+3, $$
as algebraic subvarieties in $\mathbb{C}^{4g+\delta}$, where $\delta=2(g-3[g/3])$, and in $\mathbb{C}^{g(g+1)/2}$. We uniformize these varieties with the help of $\wp$-functions of several variables defined on the universal space of Jacobians of such curves. By way of application, we obtain a system of nonlinear partial differential equations integrable in trigonal $\wp$-functions. This system in particular contains the oussinesq equation.

UDC: 512.742+517.957

Received: 22.05.2000

DOI: 10.4213/faa307


 English version:
Functional Analysis and Its Applications, 2000, 34:3, 159–171

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024