RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya // Archive

Funktsional. Anal. i Prilozhen., 2012 Volume 46, Issue 3, Pages 91–96 (Mi faa3083)

This article is cited in 11 papers

Brief communications

Operator Error Estimates in $L_2$ for Homogenization of an Elliptic Dirichlet Problem

T. A. Suslina

St. Petersburg State University, Faculty of Physics

Abstract: In a bounded domain ${\mathcal O} \subset {\mathbb R}^d$ with $C^{1,1}$ boundary a matrix elliptic second-order operator ${A}_{D,\varepsilon}$ with Dirichlet boundary condition is studied. The coefficients of this operator are periodic and depend on $\mathbf{x}/\varepsilon$, where $\varepsilon >0$ is a small parameter. The sharp-order error estimate $\|{A}_{D,\varepsilon}^{-1} - ({A}_D^0)^{-1} \|_{L_2 \to L_2} \le C \varepsilon$ is obtained. Here ${A}^0_D$ is an effective operator with constant coefficients and Dirichlet boundary condition.

Keywords: periodic differential operators, homogenization, effective operator, operator error estimates.

UDC: 517.956.2

Received: 16.01.2012

DOI: 10.4213/faa3083


 English version:
Functional Analysis and Its Applications, 2012, 46:3, 234–238

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024