RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya // Archive

Funktsional. Anal. i Prilozhen., 2013 Volume 47, Issue 2, Pages 55–67 (Mi faa3112)

This article is cited in 1 paper

KMS States on $\mathfrak{S}_\infty$ Invariant with Respect to the Young Subgroups

N. I. Nessonov

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, Khar'kov

Abstract: Let $\mathfrak{S}_\mathbb{X}$ be the group of all finite permutations on a countable set $\mathbb {X}$, and let $\Pi=({}^1\mathbb{X},\dots,{}^n\mathbb{X})$ be a partition of $\mathbb{X}$ into disjoint subsets such that $|{}^i\mathbb{X}|=\infty$ for all $i$. We set $\mathfrak{S}_\Pi=\{s\in\mathfrak{S}_\mathbb{X}\mid s({}^i\mathbb{X})={}^i\mathbb{X}$ for all $i\}$. A positive definite function $\varphi$ on $\mathfrak{S}_\mathbb{X}$ is called a KMS state if the corresponding vector in the space of the GNS representation is cyclic for the commutant of this representation. A complete description of all factor KMS states which are invariant (central) with respect to the subgroup $\mathfrak{S}_\Pi$ is obtained.

Keywords: KMS state, indecomposable state, Young subgroup, factor representation, quasi-equivalent representations.

UDC: 517.986.4

Received: 12.01.2011

DOI: 10.4213/faa3112


 English version:
Functional Analysis and Its Applications, 2013, 47:2, 127–137

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025