RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya // Archive

Funktsional. Anal. i Prilozhen., 2014 Volume 48, Issue 3, Pages 63–83 (Mi faa3152)

This article is cited in 4 papers

Optimal Elliptic Sobolev Regularity Near Three-Dimensional Multi-Material Neumann Vertices

R. Haller-Dintelmanna, W. Höppnerb, H.-Ch. Kaiserb, J. Rehbergb, G. M. Zieglerc

a Technische Universität Darmstadt
b Weierstrass-Institut für Angewandte Analysis und Stochastik, Berlin
c Freie Universität Berlin

Abstract: We study the optimal elliptic regularity (within the scale of Sobolev spaces) of anisotropic div–grad operators in three dimensions at a multi-material vertex on the Neumann part of the boundary of a 3D polyhedral domain. The gradient of any solution of the corresponding elliptic partial differential equation (in a neighborhood of the vertex) is $p$-integrable with $p>3$.

Keywords: elliptic div–grad operator, piecewise linear 3D flattening, anisotropic ellipticity in three dimensions, transmission at material interfaces, mixed Dirichlet–Neumann boundary conditions, optimal Sobolev regularity.

UDC: 517.9

Received: 31.01.2012

DOI: 10.4213/faa3152


 English version:
Functional Analysis and Its Applications, 2014, 48:3, 208–222

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024