RUS  ENG
Full version
JOURNALS // Funktsional'nyi Analiz i ego Prilozheniya // Archive

Funktsional. Anal. i Prilozhen., 2014 Volume 48, Issue 4, Pages 74–77 (Mi faa3157)

This article is cited in 7 papers

Brief communications

Two-Dimensional von Neumann–Wigner Potentials with a Multiple Positive Eigenvalue

R. G. Novikova, I. A. Taimanovbc, S. P. Tsarevd

a École Polytechnique, Centre de Mathématiques Appliquées
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
c Novosibirsk State University
d Institute of Space and Information Technologies, Siberian Federal University

Abstract: By the Moutard transformation method we construct two-dimensional Schrödinger operators with real smooth potentials decaying at infinity and having a multiple positive eigenvalue. These potentials are rational functions of spatial variables and their sines and cosines.

Keywords: two-dimensional Schrödinger operator, Moutard transformation, positive eigenvalues.

UDC: 517.95+517.984.5

Received: 02.08.2013

DOI: 10.4213/faa3157


 English version:
Functional Analysis and Its Applications, 2014, 48:4, 295–297

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024